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I t  is shown that in any wave field (X-rays, electrons, light) in a perfect crystal the direction of 
energy flow is along the normal of the surface of dispersion taken at the point of the surface 
representing the wave field. This holds for any polarization of the wave field and in particular 
under conditions where simultaneous reflections occur. This confirms the result obtained in a 
previous paper (Kate, 1952). 

1. In troduc t ion  

Several years ago M. v. Laue showed the method for 
obtaining the energy flow of X-rays (1952), and more 
recently tha t  of material particles (1953) in ideally 
perfect crystals. According to his calculation the 
Poynting vector y (in the case of X-rays) and the 
current vector T (in the case of material particles) 
are very complicated on an atomic scale. But  y and T 
can be expressed by a comparatively simple form if 
they are averaged over time and space. 

The present paper supplements his result by showing 

that  the direction of these averaged vectors (~ and T) 
is the same as the direction of the normal of the 
dispersion surface in the case of non-absorbing crystals. 
This relation is independent of simultaneous reflection 
and polarization. In addition, the relation holds also 
in crystal optics of visible rays. 

In the following t rea tment  we are only concerned 
with the case of X-ray  diffraction because the case of 
material particles can be treated according to the 
same procedure. 

2. F u n d a m e n t a l  e q u a t i o n s  

According to the well known dynamical theory of 
X-rays (v. Laue, 1948; James, 1954) the wave fields 
D and H can be expressed by a Bloch function 

D = exp [jvt] .~, Dm exp [ - j (km"  r)] 
m (1) 

H = exp [jvt] 2 H~ exp [ - j ( k ~ .  r ) ] ,  
m 

where km are the wave vectors of diffracted beams 
and can be writ ten as 

k m =  k0+bm • (1') 

Here k 0 is the wave vector of the primary beam and 
bm are the reciprocal lattice vectors of the crystal. 
The amplitude of the component waves, Dm and Hm, 
are determined by the following set of fundamental  
equations, 
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(k2-k~)Dm = ~ ~m_q(km× (kin× Dq)) (2) 
q 

(~7~ = --OO...-}-OO), 

where ~n is the Fourier coefficient of the distribu- 
tion of polarizability. 

From these relations it is evident that every com- 
ponent wave is a transverse wave. Therefore it is 
sufficient to consider only two components D.~ and 
Dm,. Here suffixes ~ and 7/ indicate the mutually 
perpendicular directions of polarization. Multiplying 
equation (2) by the unit vectors D.~/ID.~[ and 
Dm~/[Dmvl we obtain 

k 2-kek ~" .m Dm~ = -~{Cl)(q~,m~)Dq¢'+cf(q~7,;)Dq,{ } 
(3) (+) } k 2 - k ~  Dm~ = ~v (q,m'~ Dq~,+9 ~ Dq,: 

k z - 7  \~ ~] ~'~ 

(+/ where q) ~,~ etc. denote ~m-q eosz~ ;~ , ,  and Z ~ ; ~ '  

is the angle between D ~  and Dq~,. The condition for 
(3) to have a non-trivial solution is 

kS k 2k2m 0 ~ ~:,~ ~ \~/~] 
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Since k is considered given, this equation is, by  
virtue of (1'), an equation of infinite order for k0; 
it defines the dispersion surface in reciprocal space. 
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We denote hereafter each branch of this equation and 
its relevant quantities by the superscript (a). 

For a given k~) which satisfies equation (4), the 
amplitude ratio of an arbi t rary pair of two component 
waves can be determined as follows: 

or  

D(:) IreS; mS1 (:) 
(Sa) 

D ~  ), I@' ; q~'l (=) 
D(~) = + (5b) 

In  these expressions, lqU; m~l (~) means the small 
determinant derived from the original determinant, 
equation (4), by removing the q~'-column and the 
m~-row. Thus, if the amplitude of one component 
wave, say D(o'~ ), is given the amphtude of the other 
can be determined uniquely. The amplitude D(0~ ) is 
determined by the boundary conditions of the wave 
field at the crystal surfaces.* 

Inserting these component wave fields into equation 
(1) we obtain the total wave field as follows: 

D = exp [jut] ~ ~ D(~ exp [-j(k(~).r)]  
arn~ 

H = exp [jvt] ~" ~ H(~ exp [ - j (k(~) . r ) ] .  
a m~ 

(1') 

3.  P o y n t i n ~  v e c t o r  a n d  t a n g e n t i a l  p l a n e  o f  
d i s p e r s i o n  s u r f a c e  

According to Laue's t reatment  we obtain the averaged 
Poynting vector ~ as 

: ~ m+ m~ (6) 

In ordinary experimental conditions we observe a 
Poynting vector averaged over a region larger than 
a few microns, whereas the spatial periodicity of 
Tendell6sung',  l / Ik(~)-k @ is of the same order of 0 0 ' 
magnitude. Therefore it is sufficient to consider 
which means the vector ~ averaged over the period of 
Pendell6sung. In addition there are the following 
relations 

{ k(~)~D(~)~ ~, 
(D(~) × H(~,) = ~ ,  ~ v ,  = ~ (7) 

0, ~' = ~]. 
Therefore 

y = ~¥(=) (8) 

y(=) = cl4~.2, k ~ ) g ) ~ ? .  (S') 
m~ 

This resul~ is essentially equivalent to Laue's result 
and shows tha t  there exists a stream of energy ¥(~) 
corresponding to the a-branch of the dispersion sur- 

* I f  ImU; 0~l(=) = 0, Dm~'/Do~ cannot  be derived uniquely.  
I n  this case, Dine" is considered to be independent  of D0~ and 
to be given by  the  b o u n d a r y  conditions.  

face and the term flow of energy can be expressed by 
the vector sum of all y(~). 

Let us rewrite this equation in a more convenient 
form, using equations (5a) and (5b). Further,  we omit 
the suffix (a) because we shall consider only y(~) 
hereafter. In the case of a non-absorbing crystal we 
have 

~ = ~*~.  

The definition of Zq~';-~ gives 

Thus it follows tha t  

~(~,) = ~*@'~). (9) 
This means that  

Iq~'; m#l = ImP; @'1" (10) 

and in the special case 

ImP; m~[ = Imp; m~[* = real. (10') 

Therefore we find 

ID,,~I 2 IDq,,I ~ 
- - --- cons t ,  t (11 ) 

ImP; m~l Iq~'; q~'l " '"  

Thus we can write the Poynting vector as follows 

y =  c/(4~) const. ~:  {kmlm~; m~l}. (12) 
m~ 

Next, we consider the tangential plane of the dis- 

persion surface at  a dispersion point D, i.e. DO = k o 

and D1VI = kin. If we denote an infinitesimal vector 
on this contact plane by 6T, ko+o~r also satisfies the 
equation of the dispersion surface. Therefore o~r 
satisfies 

6 lalll = 0 ,  (13) 

where lall I denotes the determinant of the left side of 
equation (4), and ~ operates on all kin. 

Expanding lall] by the elements of the (m~)- 
column and taking the variation, the left side of 
equation (13) is 

k ~ - k ~  
-2km6"rJm~; m ~ [ + - ~ - - ~ J m $ ;  m~J 

q~' \ g g /  

= -2km6"r[m~; m#l+6~l  alll, 

where ~ denotes the variational operation which 
operates on all elements except the elements of the 
m~-column and m~-row. Further  it is easy to prove 
that  

0m~ ]all] = - 2km 6"r ]m~/; mTl] + 0~;  ~,l all[ . 

t I f  we take  l lDn~]2  = 1, the  cons tan t  in equat ion  (11) 
m~ 

is 1/~im~; mS[. 
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Thus we obtain finally 

~lanl = -2.2:kmlm~:; m~l&r = 0 (13') 
m~ 

as the equation of the tangential plane of the disper- 
sion surface. 

4. C o n c l u s i o n  and  d i s c u s s i o n  

Comparing (12) and (13'), we can conclude that  

($-OT)  = 0 .  (14) 

This means that  the direction of energy flow cor- 
responding to each branch of the dispersion surface 
is normal to the tangential plane of the dispersion 
surface, in the case of a non-absorbing crystal. 

The above conclusion may be understood also from 
the stand-point of wave packets. In the previous work 
on electron diffraction, the author pointed out (1952) 
that  electron wave packets go through a crystal in 
the direction of the normal of the dispersion surface. 
This holds also in the case of X-ray diffraction. There- 
fore equation (14) may be considered as another proof 
of the previous result. 

I t  seems worth while to note here that  a similar 
situation of energy flow in crystal takes place also in 
the case of visible rays. As is well known (Szivessy, 
1929), the normal surface (Normalenfl~che), ray sur- 
face (Strahlenfli~che) and index surface (Indexfli~che) 
are considered to describe the geometrical relations of 
propagation of waves and rays. In the usual texts on 
crystal optics, it is shown that  waves propagate so 
that  their wave-vectors K lie in the direction of the 
normal of the ray surface. This is proved (Born, 1933) 
from the following fundamental relation of the field 
vector in crystals 

c~E = (r× ( D × r ) ) ,  (15) 

where E is the electric vector, c is the light velocity 
in vacuum and r is the radius vector of the ray sur- 
face. By a quite similar procedure we can prove the 
corresponding relations that  rays propagate in the 
direction of the normal of the dispersion surface from 
the following relation 

(o~/c)~D = (k× ( E × k ) ) ,  (16) 

where eo is angular frequency and k is the radius 
vector of the dispersion surface. In crystal optics of 
visible rays the index surface is used instead of the 
dispersion surface but they are geometrically similar 
to each other. 
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